Posts in MachineLearning
Ethical AI: Products that Love People

Algorithms neither love nor suffer (despite all the hype about super-intelligent sentient robots). The products that algorithms power neither love nor suffer. But people build products and people use products. And a product that loves is one that, as Tyler Schnoebelen laid out in his recent Wrangle Talk, anticipates and respects the goals of the people it impacts. For us, this means building models with evaluation metrics beyond just precision, recall, or accuracy. It means setting objective functions that maximize not only profits, but the mutual benefit between company and consumer. It means helping businesses appreciate the miraculous nuances of people so they can provide contextual experiences and offer relevant products that may just make a consumer experience enjoyable.

Read More
The Ethics of Everybody Else: New video posted

I had heard about Wrangle for a while — a data science conference where folks come to talk about the hardest problems they’ve faced and how they’ve found their ways around them. It also has a rancher-rustler theme, though you can’t see the cowboy boots I wore in the newly-posted video of my talk.

Here’s how I kicked off my 20-minute talk, called “The Ethics of Everybody Else”:


Read More
Explain AI to me like I’m a 5-year-old…or a CEO

There are lots of articles about Artificial Intelligence, but it’s pretty hard to pin people down with a definition. So in this article, I’ll pull out the best definitions of AI from the Harvard Business Review. The HBR understands the context for C-suite executives well and CEOs of big companies usually have decades upon decades of experience.

But what if we swing to the opposite end of the spectrum — to people who have only been alive for half a decade? In the second part of the post, I’ll take data from child language acquisition studies and work out a definition of AI made up exclusively of words that five-year-olds understand. (These last paragraphs wouldn’t work at all.)

Read More
The carrots and sticks of ethical NLP

Professions run into ethical problems all the time. Consider engineering: the US sold $9.9b worth of arms in 2016 ($3.9b in missiles). The most optimistic reading is that instruments of death prevent death. Consider medicine: Medical research is dominated by concerns of market size and patentability, leaving basic questions like “is this fever from bacteria or virus” unanswered for people treating illnesses in low-income countries. Consider lawLawyers upholding the law can break any normal definition of justice. Even in philosophyethicists are not known to be more moral than anyone else.

Read More
U.S. presidential debates through the eyes of a computer

This post wraps up a series I’ve been doing on using machine learning models to understand recent American political debates (here and here). By taking all the transcripts of the debates since last year, I show which words and phrases most distinguish debaters’ styles and issues. Training a computer to identify speakers is usually thought of as a way of doing forensics or personalization. But here, I’m interested in something closer to summarization. If you can pick one section of talk for each candidate from the last debate, which moments are most consistent with everything they’ve said up to then?

Read More
More data beats better algorithms

Most academic papers and blogs about machine learning focus on improvements to algorithms and features. At the same time, the widely acknowledged truth is that throwing more training data into the mix beats work on algorithms and features. This post will get down and dirty with algorithms and features vs. training data by looking at a 12-way classification problem: people accusing banks of unfair, deceptive, or abusive practices.

Read More
Nattering Nabobs of Negativity: Bigrams, “Nots,” and Text Classification

You can get pretty far in text classification just by treating documents as bags of words where word order doesn’t matter. So you’d treat “It’s not reliable and it’s not cheap” the same as “It’s cheap and it’s not not reliable”, even though the first is an strong indictment and the second is a qualified recommendation. Surely it’s dangerous to ignore the ways words come together to make meaning, right?

Read More
Training an AI doctor

Some of the earliest applications of artificial intelligence in healthcare were in diagnosis—it was a major push in expert systems, for example, where you aim to build up a knowledge base that lets software be as good as a human clinician. Expert systems hit their peak in the late 1980s, but required a lot of knowledge to be encoded by people who had lots of other things to do. Hardware was also a problem for AI in the 1980s.

Read More
The gender of artificial intelligence

There’s Apple’s Siri, Microsoft’s Cortana, Amazon’s Alexa, and Nuance’s Nina. Sure, Facebook has “M”, Google has “Google Now”, and Siri’s voice isn’t always that of a woman. But it does feel worth noting that (typically male-dominated) engineering groups routinely give women’s names to the things you issue commands to. Is artificial intelligence work about Adams making Eves?

Read More
Getting a chatbot to understand 100,000 intentions

At their best, chatbots help you get things done. At their worst, they spew toxic nonsense. Whether we call them chatbots, intelligent agents, or virtual agents, the basic idea is that you shouldn’t need to bother with human interaction for things that computers can do quickly and efficiently: ask questions about a flight, manage your expenses, order a pizza, tell you the weather, and apply for a job. A lot of these are handy but may not feel quite like artificial intelligence–later in this post, we’ll tackle the relationship between detecting intentions, having conversations and building trust as the core pieces that make a chatbot feel more like artificial intelligence.

Read More
Self-driving cars in cornfields

You can turn right on red in Iowa. Except not where I was last night, from Washington Street on to Linn, which I only realized as I read the “no right on red” sign mid-turn. You’re definitely not supposed to turn left on red, which is what I did a few blocks earlier going from Iowa St. to Clinton. I have no excuse except—I’m not kidding—my mind was preoccupied by thoughts about self-driving cars.

Read More